

Features

Embedded EEPROM
Very Easy Development with RFPDK
All Features Programmable
Frequency: 868 MHz FSK, GFSK and
OOK Demodulation Symbol Rate: 0.1

to 100 ksps

Sensitivity: -109 dBm @ 9.6 ksps, FSK, 868M Hz

4-wire SPI Interface

Direct, Buffer and Packet Mode Supported Configurable Data Handler and 32-Byte FIFO Manchester Decoding and Data De-Whitening

Supply Voltage: 1.8 to 3.6 V Low Power Consumption: 5.7 mA Low Sleep Current

60 nA when Sleep Timer Off 440 nA when Sleep Timer on RoHS Compliant

Module Size: 15*12.5*1.8mm

The DL-RXC2219A/B is an ultra low power, high performance, OOK and (G)FSK receiver 868 MHz wireless applications. includes a complete line of transmitters, receivers and transceivers. All features can All features can be configured either by off-line EEPROM programming or on-line registers writing. The configuration file to be written , into the registers is generated by the smart RFPDK.

The DL-RXC2219A/B operates from a supply voltage of 1.8 V to 3.6V, when it is always on, it consumes only 5.7 mA current while achieving -109 dBm receiving sensitivity (FSK, 9.6 ksps symbol rate, 868.35 MHz), and only 60 nA sleep current for superior battery life. The device supports packet handling, 32-byte FIFO, Manchester decoding and data de-whitening for the received data processing. Besides the demodulated data and the sync clock, the device can also , send out the power-on reset, the system clock, as well as 2 configurable interrupts for the external device. DL-RXC2219A/B receiver together with the

DL-TXC2119A/B transmitter enables a powerful RF link.

DL-RXC2219A/B

Applications

Low-Cost Consumer Electronics Applications
Home and Building Automation
Infrared Receiver Replacements
Industrial Monitoring and Controls
Remote Automated Meter Reading
Remote Lighting Control System
Wireless Alarm and Security Systems
Remote Keyless Entry (RKE)

Tel: 0755-029369047

Abbreviations

Abbreviations used in this data sheet are described below.

ADC	Analog to Digital Converter	NP0	Negative-Positive-Zero
AFC	Automatic-Frequency-Control	NC	Not Connected
AGC	Automatic Gain Control	оок	On-Off Keying
AN	Application Notes	PC	Personal Computer
BER	Bit Error Rate	PCB	Printed Circuit Board
BOM	Bill of Materials	PLL	Phase Lock Loop
BSC	Basic Spacing between Centers	PN9	Pseudorandom Noise 9
ВТ	bandwidth-time product	POR	Power On Reset
BW	Bandwidth	PUP	Power Up
CRC	Cyclic Redundancy Check	QFN	Quad Flat No-lead
DC	Direct Current	RESV	Reserved
EEPROM	Electrically Erasable Programmable Read-Only	RF	Radio Frequency
	Memory	RFPDK	RF Products Development Kit
ESD	Electro-Static Discharge	RoHS	Restriction of Hazardous Substances
ESR	Equivalent Series Resistance	RSSI	Received Signal Strength Indicator
Ext	Extended	Rx	Receiving, Receiver
FIFO	First In First Out	SAR	Successive Approximation Register
FSK	Frequency-Shift Keying	SMD	Surface Mounted Devices
GFSK	Gauss frequency Shift Keying	SPI	Serial Port Interface
GPO	General Purpose Output	SR	Symbol Rate
HEX	Hexadecimal	STBY	Standby
IF	Intermediate Frequency	TH	Threshold
LNA	Low Noise Amplifier	Tx	Transmission, Transmitter
LO	Local Oscillator	Тур	Typical
LPOSC	Low Power Oscillator	USB	Universal Serial Bus
Max	Maximum	VCO	Voltage Controlled Oscillator
MCU	Microcontroller Unit	WOR	Wake-On Radio
Min	Minimum	XOSC	Crystal Oscillator
MOQ	Minimum Order Quantity	XTAL/Xtal	Crystal
NA	Not Applicable/Not Available		

1. Electrical Characteristics

VDD = 3.3 V, T_{OP} = 25 °C, F_{RF} = 868.35 MHz, sensitivities are measured in receiving a PN9 sequence and matching to 50 Ω impedance, with the BER of 0.1%. All measurements are performed using the board DL-RXC2219A/B-EM V1.0, unless otherwise noted.

1.1 Recommended Operation Conditions

Table 2. Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Voltage Supply	V _{DD}		1.8		3.6	V
Operation Temperature	Top		-40		85	°C
Supply Voltage Slew Rate			1			mV/us

1.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings^[1]

Parameter	Symbol	Conditions	Min	Max	Unit
Supply Voltage	V _{DD}		-0.3	3.6	V
Interface Voltage	VIN		-0.3	V _{DD} + 0.3	V
Junction Temperature	TJ		-40	125	°C
Storage Temperature	T _{STG}		-50	150	°C
Soldering Temperature	T _{SDR}	Lasts at least 30 seconds		255	°C
ESD Rating ^[2]		Human Body Model (HBM)	-2	2	kV
Latch-up Current		@ 85 ℃	-100	100	mA

Notes:

- [1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- [2]. The RFM219S is high-performance RF integrated circuits with VCON/P pins having an ESD rating < 2 kV HBM. Handling and assembly of this device should only be done at ESD-protected workstations.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Receiver Specifications

Table 4. Receiver Specifications

Parameter	Parameter Symbol Conditions		Min	Тур	Max	Unit
Frequency Range	FRF	111 - 111 - 1	300		960	MHz
Combal Data	CD.	OOK demodulation	0.1		40	ksps
Symbol Rate	SR	(G)FSK demodulation	0.1		100	ksps
Deviation	FDEV	(G)FSK	1		200	kHz
Bandwidth-Time Product	ВТ		15	0.5	8.70	- 53
1884 788	S _{315-00K}	315 MHz, SR = 1 ksps		-114		dBm
	S _{433,92-00K}	433.92 MHz, SR = 1 ksps		-113		dBm
OOK Sensitivity	S858.35-00K	868.35 MHz, SR = 1 ksps		-110		dBm
	S ₉₁₅ -00K	915 MHz, SR = 1 ksps		-109		dBm
	S _{315-F8K}	315 MHz, SR = 9.6 ksps, F _{DEV} = 19.2 kHz		-112		dBm
(O) 5014 O	S _{433.92-F8K}	433.92 MHz, SR = 9.6 ksps, F _{DEV} = 19.2 kHz		-111		dBm
(G) FSK Sensitivity	S868.35-F3K	868.35 MHz, SR = 9.6 ksps, F _{DEV} = 19.2 kHz		-109		dBm
	S _{915-F8K}	915 MHz, SR = 9.6 ksps, F _{DEV} = 19.2 kHz		-109		dBm
Saturation Input Signal Level	P _{LVL}			10		dBm
	I _{DD-OOK}	315 MHz, OOK		3.5		mA
		433.92 MHz, OOK		3.8		mA
OOK Working Current		868.35 MHz, OOK		5.2		mA
		915 MHz, OOK		5.4		mA
	I _{DD-F8K}	315 MHz, FSK		4.0		mA
		433.92 MHz, FSK		4.3		mA
FSK Working Current		868.35 MHz, FSK		5.7		mA
		915 MHz, FSK		5.9		mA
20 20 20	ISLEEP	When sleep timer is turned on		440		nA
Sleep Current		When sleep timer is turned off		60		nA
Frequency Resolution	FRES	//		24.8	. 17	Hz
Frequency Synthesizer Settle Time	TLOCK	From XOSC settled		150		us
		SR = 1 ksps, ±1 MHz offset, CW interference		52		dB
District to the second	DI	SR = 1 ksps, ±2 MHz offset, CW interference		74		dB
Blocking Immunity	BI	SR = 1 ksps, ±10 MHz offset, CW interference		75		dB
Image Rejection Ratio	IMR	IF = 280 kHz		35		dB
Input 3 rd Order Intercept	IIP3	Two tone test at 1 MHz and 2 MHz offset frequency. Maximum system gain settings		-25		dBm
Receiver Bandwidth	BW	, , , , , , , , , , , , , , , , , , , ,		1	500	kHz
Receiver Start-up Time	T _{START-UP}	From power up to receive, in Always Receive Mode	50	7.3		ms
Receiver Wake-up Time T _{WAKE-UP}		From sleep to receive, in Duty-Cycle Receive Mode		0.61		ms

1.4 Crystal Oscillator

Table 5. Crystal Oscillator Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Crystal Frequency ^[1]	F _{XTAL}		26	26	26	MHz
Crystal Tolerance ^[2]				±20		ppm
Load Capacitance	C _{LOAD}		10	15	20	pF
Crystal ESR	Rm				60	Ω
XTAL Startup Time[3]	t _{XTAL}			400		us

Notes:

- The RFM219S can directly work with external 26 MHz reference clock input to XIN pin (a coupling capacitor is required) with peak-to-peak amplitude of 0.3 to 0.7 V.
- [2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.
- [3]. This parameter is to a large degree crystal dependent.

1.5 LPOSC

Table 6. LPOSC Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Calibrated Frequency ^[1]	F _{LPOSC}			1		kHz
Frequency Accuracy		After calibration		1		%
Temperature Coefficient[2]			***	-0.02		%/°C
Supply Voltage Coefficient[3]				+0.5		%/V
Initial Calibration Time	t _{LPOSC-CAL}		20	4		ms

Notes:

- [1]. The LPOSC is automatically calibrated to the crystal oscillator during the PUP state, and is periodically calibrated since
- [2]. Frequency drifts when temperature changes after calibration.
- [3]. Frequency drifts when supply voltage changes after calibration.

2. Pin Descriptions

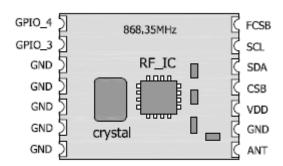


Figure 2. Pin Diagram

Table 7. Pin Descriptions

Pin Number	Name	I/O	Descriptions
1	ANT	I	RF signal input to the LNA
2	GND	I	Ground
3	VDD	I	Power supply input
4	CSB		3-wire SPI chip select input for EEPROM
4	CSB		programming
5	SDA	I/O	3-wire SPI data input and output for EEPROM
5	SDA	1/0	programming
			3-wire SPI clock input for EEPROM
6	SCL	I	programming
7	FCSB	ı	
8	GPIO4(DATA)	0	Received data output
9	GPIO3	I/O	data output
10,11,12,13,14	GND	I	Ground

3. Typical Performance Characteristics

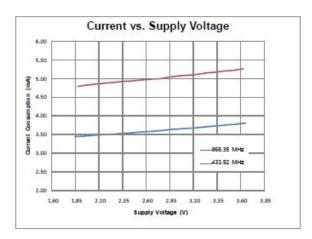


Figure 3. Current vs. Voltage, $F_{RF} = 433.92 /$ 868.35 MHz, OOK, SR = 1 ksps

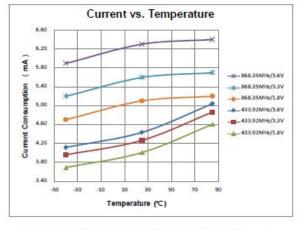


Figure 4. Current vs. Temperature, F_{RF} = 433.92 / 868.35 MHz, FSK, SR = 1 ksps

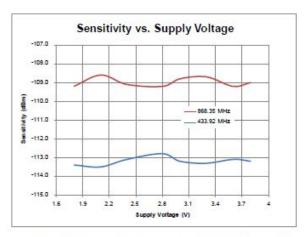


Figure 5. Sensitivity vs. Supply Voltage, SR = 1 ksps, OOK, BER = 0.1%

Figure 6. Sensitivity vs. Temperature, F_{RF} = 433.92 / 868.35 MHz, FSK, V_{DD} = 3.3 V, SR = 1 ksps, BER = 0.1%

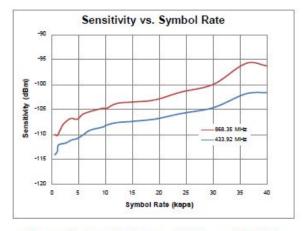


Figure 7. Sensitivity vs. SR, F_{RF} = 433.92 / 868.35 MHz, OOK, V_{DD} = 3.3 V, BER = 0.1%

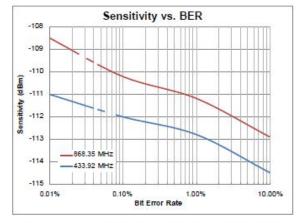


Figure 8. Sensitivity vs. BER, F_{RF} = 433.92 / 868.35 MHz, V_{DD} = 3.3 V, SR = 1 ksps

4. Typical Application Schematic

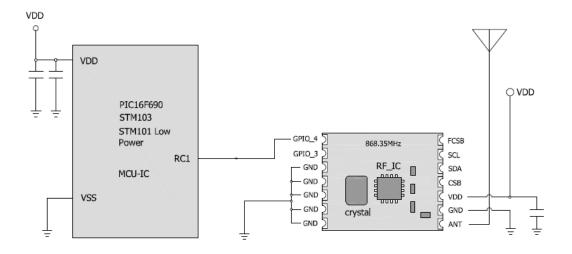


Figure 9: Typical Application Schematic

5. Functional Descriptions

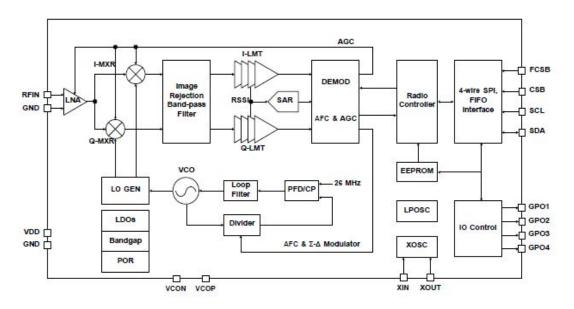
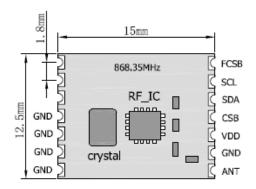
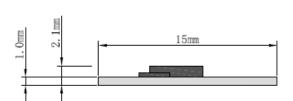




Figure 10. Functional Block Diagram

6. Package Outline

